EXERCISE 1.1

1. Is zero a rational number? Can you write it in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$?

Sol :

Yes, zero is a rational number because it can be written in any one of the following forms:
$0=\frac{0}{1}, \frac{0}{2}, \frac{0}{-1}, \frac{0}{-2}, \frac{0}{-3}, \frac{0}{3}$ and so on
This is in the form $\frac{p}{q}$, where $q \neq 0$.
2. Find six rational numbers between 3 and 4 .

Sol :

Here may be infinite rational number between any two rational number. But here we have to determine only six number between 3 and 4 .
To get six rational number between 3 and 4 in easiest way we write 3 and 4 as follows

$$
3=3 \times \frac{6+1}{6+1}=\frac{3 \times 7}{7}=\frac{21}{7}
$$

and

$$
4=4 \times \frac{6+1}{6+1}=\frac{4 \times 7}{7}=\frac{28}{7}
$$

Six rational numbers between 3 and 4 are
$\frac{22}{7}, \frac{23}{7}, \frac{24}{7}, \frac{25}{7}, \frac{26}{7}, \frac{27}{7}$
There can be other set of rational numbers also. One other set is $\frac{31}{10}, \frac{32}{10}, \frac{33}{10}, \frac{34}{10}, \frac{35}{10}, \frac{36}{10}$.

PRACTICE :

1. Find six rational numbers between 13 and 14 .

Ans: $\frac{92}{7}, \frac{93}{7}, \frac{94}{7}, \frac{95}{7}, \frac{96}{7}$ and $\frac{97}{7}$
2. Find seven rational numbers between 22 and 23.

Ans: $\frac{177}{8}, \frac{178}{8}, \frac{179}{8}, \frac{180}{8}, \frac{181}{8}, \frac{182}{8}$ and $\frac{183}{8}$
3. Find five rational numbers between $\frac{3}{5}$ and $\frac{4}{5}$.

Sol :

Here may be infinite rational number between any two rational number. But here we have to determine only five number between $\frac{3}{5}$ and $\frac{4}{5}$.
To get five rational number between $\frac{3}{5}$ and $\frac{4}{5}$ in easiest way we write $\frac{3}{5}$ and $\frac{4}{5}$ as follows

$$
\frac{3}{5}=\frac{3 \times(5+1)}{5 \times(5+1)}=\frac{3 \times 6}{5 \times 6}=\frac{18}{30}
$$

and

$$
\frac{4}{5}=\frac{4 \times(5+1)}{5 \times(5+1)}=\frac{4 \times 6}{5 \times 6}=\frac{24}{30}
$$

Five rational numbers between $\frac{3}{5}$ and $\frac{4}{5}$ are
$\frac{19}{30}, \frac{20}{30}, \frac{21}{30}, \frac{22}{30}, \frac{23}{30}$.
There can be other set of rational numbers also.

PRACTICE :

1. Find four rational numbers between $\frac{5}{7}$ and $\frac{6}{7}$. Ans : $\frac{26}{35}, \frac{27}{35}, \frac{28}{35}$ and $\frac{29}{35}$
2. Find six rational numbers between $\frac{4}{9}$ and $\frac{7}{8}$. Ans: $\quad \frac{33}{72}, \frac{34}{72}, \frac{35}{72}, \frac{36}{72}, \frac{37}{72}$ and $\frac{38}{72}$
3. State whether the following statements are true or false. Give reasons for your answers.
4. Every natural number is a whole number.
5. Every integer is a whole number.
6. Every rational number is a whole number.

Sol :

1. True, as the set of whole numbers
 contains all the natural numbers.
2. False, as negative integer, e.g., -3 is not a whole number.
3. False, as $\frac{2}{3}$ is a rational number but not a whole number.

EXERCISE 1.2

1. State whether the following statements are true or false. Justify your answers.
2. Every irrational number is a real number.
3. Every point on the number line is of the form \sqrt{m}, where m is a natural number.
4. Every real number is an irrational number.

Sol :

1. True, All irrational and rational numbers together
make up the collection of real numbers.
2. False, as $\frac{3}{2}$ on the number line cannot be a square root of a natural number.

Also, a negative number cannot be a square root of natural number, as \sqrt{m} represents a positive value.
3. False, as 2 is a real number but not an irrational number.
2. Are the square roots of all positive integers irrational? If not, give an example of the square root of a number that is a rational number.

Sol :

No. Square roots of positive integers are not irrational For example,
$\sqrt{9}=3$, is rational numbers.
$\sqrt{16}=4$, is rational numbers.
$\sqrt{25}=5$, is rational numbers.
$\sqrt{36}=6$, is rational numbers.
3. Show how $\sqrt{5}$ can be represented on the number line.

Sol :

Here

$$
(\sqrt{5})^{2}=2^{2}+1^{2}
$$

Let $O X$ be a number line on which O represent 0 and A represent 2 unit length. Draw a line $A B \perp O A$ and mark point B on it so that $A B=1$ unit.
Then

$$
\begin{aligned}
O B^{2} & =O A^{2}+A B^{2} \\
& =2^{2}+1^{2}=5=4+1
\end{aligned}
$$

or $\quad O B=\sqrt{5}$
Using a compass with centre O and radius $O B$ we mark a point P on the number line corresponding to $\sqrt{5}$ on the number line.

Thus P represent the number $\sqrt{5}$ on number line.
4. Classroom activity (Constructing the 'square root spiral') : Take a large sheet of paper and construct the 'square root spiral' in the following fashion. Start with a point O and draw a line segment $O P_{1}$ of unit length. Draw a line segment $P_{1} P_{2}$ perpendicular to $O P_{1}$ of unit length (see Figure).

Constructing Square Root Spiral

Now, draw a line segment $P_{2} P_{3}$ perpendicular to $O P_{2}$ of unit length. Then, draw a line segment $P_{3} P_{4}$ perpendicular to $O P_{3}$ of unit length, Continuing in this manner, you can get the line segment $P_{n-1} P_{n}$ by drawing a line segment of unit length perpendicular to $O P_{n-1}$. In this manner, you will have created the points P_{2}, P_{3}, \qquad ., P_{n}, \qquad , and joined them to create a beautiful spiral depicting $\sqrt{2}, \sqrt{3}, \sqrt{4}$,
\qquad .

PRACTICE :

1. Show how $\sqrt{10}$ can be represented on the number line.
Ans : Proof
2. Show how $\sqrt{8}$ can be represented on the number line.
Ans : Proof

Sol :

EXERCISE 1.3

1. Write the following in decimal form and say what kind of decimal expansion each has :
(i) $\frac{36}{100}$
(ii) $\frac{1}{11}$
(iii) $4 \frac{1}{8}$
(iv) $\frac{3}{13}$
(v) $\frac{2}{11}$
(vi) $\frac{329}{400}$

Sol :

(i) $\frac{36}{100}$

$$
\frac{36}{100}=0.36, \text { terminating decimal expansion. }
$$

(ii) We have $\frac{1}{11}$

	0.09090909	
11	100	
	99	
	100	
	99	
	100	
	99	
	100	
	99	
	1	

$$
\begin{aligned}
\frac{1}{11} & =0.090909 \\
& =0 . \overline{09}
\end{aligned}
$$

\qquad
non-terminating repeating decimal expansion.
(iii) $4 \frac{1}{8}$
$4 \frac{1}{8}=\frac{33}{8}=4.125$, terminating decimal expansion.
(iv) $\frac{3}{13}$

$$
\begin{aligned}
\frac{3}{13} & =0.230769230769 \ldots \ldots \ldots \\
& =0 . \overline{230769}, \text { non-terminating repeating decimal }
\end{aligned}
$$ expansion.

(v) $\frac{2}{11}$

$$
\frac{2}{11}=0.181818 \ldots \ldots \ldots
$$

$=0 . \overline{18}, \quad$ non-terminating repeating decimal expansion.
(vi) $\frac{329}{400}$

	0.8225
400	3290
	3200
	900
	800
	1000
	800
	2000
	2000
	\times

$\frac{329}{400}=0.8225$, terminating decimal expansion.

PRACTICE :

1. Write the following in decimal form and say what kind of decimal expansion each has :
(i) $\frac{1}{13}$
(ii) $5 \frac{2}{3}$
(iii) $14 \frac{3}{10}$
(iv) $\frac{476}{3}$
(v) $\frac{15752}{25}$
(vi) $\frac{11}{17}$
(vii) $\frac{2}{7}$
(viii) $\frac{62608}{32}$

Ans: (i) $0 . \overline{076923}$ non-terminating repeating
(ii) $5 . \overline{6}$ non-terminating repeating
(iii) 14.3 terminating
(iv) $158 . \overline{6}$ non-terminating repeating
(v) 630.08 terminating
(vi) $0 . \overline{647058823529417}$ non-terminating repeating
(vii) $0 . \overline{285714}$ non-terminating repeating (viii) 1956.5 terminating
2. You know that $\frac{1}{7}=0 . \overline{142857}$. Can you predict what the decimal expansions of $\frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7}$ are without actually doing the long division? If so, how?
[Hint : Study the remainders while finding the value of $\frac{1}{7}$ carefully.]

Sol :

Yes. All the above will have repeating decimals which are permutations of $1,4,2,8,5,7$. For example, here is $\frac{1}{7}$

To find $\frac{2}{7}$, locate when the remainder becomes 2 and the respective quotient (here it is 2) then, write the new quotient beginning from there (the arros drawn in the figure above using the repeating digits, $1,4,2$, $8,5,7$. So $\frac{2}{7}=0 . \overline{285714}$.

Alternative

Yes, we can predict the required decimal expansions.
We are given, $\quad \frac{1}{7}=0 . \overline{142857}$
On dividing 1 by 7 , we find that the remainders repeat after six divisions, therefore, the quotient has a repeating block of six digits in the decimal expansion of $\frac{1}{7}$. So, to obtain decimal expansions of $\frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}$ and $\frac{6}{7}$; we multiply 142857 by $2,3,4,5$ and 6 respectively, to get the integer part and in the decimal part, we take block of six repeating digits in each case. Hence, we get

$$
\begin{aligned}
& \frac{2}{7}=2 \times \frac{1}{7}=2 \times 0 . \overline{142857}=0 . \overline{285714} \\
& \frac{3}{7}=3 \times \frac{1}{7}=3 \times 0 . \overline{142857}=0 . \overline{428571} \\
& \frac{4}{7}=4 \times \frac{1}{7}=4 \times 0 . \overline{142857}=0 . \overline{571428} \\
& \frac{5}{7}=5 \times \frac{1}{7}=5 \times 0 . \overline{142857}=0 . \overline{714285} \\
& \frac{6}{7}=6 \times \frac{1}{7}=6 \times 0 . \overline{142857}=0 . \overline{857142}
\end{aligned}
$$

and

PRACTICE :

1. You know that $\frac{1}{13}=0 . \overline{076923}$. Can you predict what the decimal expansions of $\frac{2}{13}, \frac{3}{13}, \frac{4}{13}, \frac{5}{13}, \frac{6}{13}$ are without actually doing the long division? If so, how?
Ans: Do yourself
2. Express the following in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$:
(i) $0 . \overline{6}$
(ii) $0.4 \overline{7}$
(iii) $0 . \overline{001}$

Sol :

(i) $0 . \overline{6}$

$$
\begin{array}{ll}
\text { Let } & x=0 . \overline{6} \\
\text { or } & x=0.666 \ldots \ldots \ldots . .
\end{array}
$$

Multiplying eq (1) by 10 we have

$$
\begin{equation*}
10 x=6.666 \ldots \ldots \ldots \tag{2}
\end{equation*}
$$

Subtracting eq (1) from (2) we have

$$
\begin{aligned}
9 x & =6 \\
x & =\frac{2}{3}
\end{aligned}
$$

(ii) $0.4 \overline{7}$

Let

$$
x=0.4 \overline{7}
$$

or

$$
\begin{equation*}
x=0.4777 \tag{1}
\end{equation*}
$$

\qquad
Multiplying eq (1) by 10 we have

$$
\begin{equation*}
10 x=4.777 \ldots \ldots \ldots \tag{2}
\end{equation*}
$$

Again multiplying eq (2) by 10 , we get

$$
100 x=47.777 \ldots \ldots \ldots
$$

Subtracting equation (2) from equation (3), we get

Hence,

$$
\begin{aligned}
90 x & =43 \\
x & =\frac{43}{90}
\end{aligned}
$$

(iii) $0 . \overline{001}$

Let

$$
\begin{align*}
& x=0 . \overline{001} \\
& x=0.001001 \ldots \ldots \ldots .
\end{align*}
$$

or
Multiplying eq (1) by 1000 we have

$$
\begin{equation*}
1000 x=1.001001 \tag{2}
\end{equation*}
$$

\qquad
Subtracting (1) from (2) we have

$$
\begin{aligned}
999 x & =1 \\
x & =\frac{1}{999}
\end{aligned}
$$

PRACTICE :

1. Express the following in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$:
(i) $0 . \overline{3}$
(ii) $0.2 \overline{7}$
(iii) $0.2 \overline{35}$
(iv) $0 . \overline{237}$
(v) $0 . \overline{132}$
(vii) $7 . \overline{478}$
(vi) $1 . \overline{27}$
(viii) $15.7 \overline{12}$

Ans: (i) $\frac{1}{3}$ (ii) $\frac{25}{9}$ (iii) $\frac{233}{990}$ (iv) $\frac{47}{198}$ (v) $\frac{131}{990}$
(vi) $\frac{14}{11}$ (vii) $\frac{7471}{999}$ (viii) $\frac{5185}{330}$
4. Express 0.99999 \qquad in the form $\frac{p}{q}$. Are you surprised by your answer? With your teacher and classmates, discuss why the answer makes \square sense.

Sol :
Let $\quad x=0.99999$ \qquad
Multiplying equation (1) by 10 we have

$$
\begin{equation*}
10 x=9.99999 \tag{2}
\end{equation*}
$$

\qquad
Subtracting equation (1) from (2) we have

$$
9 x=9 \quad \text { Hence, } x=1
$$

Yes, we are surprised by our answer. This answer makes sense as $0 . \overline{9}$ is much close to 1 , i.e. we can make the difference between 1 and $0.9999 \ldots$....as small as we wish by taking enough 9 's
5. What can the maximum number of digits be in the repeating block of digits in the decimal expansion of $\frac{1}{17}$? Perform the division to check your answer.

Sol :

00
100
85
150

$\frac{136}{140}$ 136
40 $\begin{array}{r}34 \\ \hline 60 \\ 51 \\ \hline 90\end{array}$

$$
\frac{85}{50}
$$

$$
\frac{34}{160}
$$

$$
\frac{153}{70}
$$

$$
\begin{array}{r}
68 \\
\hline 20 \\
17 \\
\hline 30
\end{array}
$$

$$
\frac{17}{130}
$$

$$
\frac{119}{110}
$$

$$
\frac{102}{80}
$$

$$
\frac{68}{120}
$$

$$
\frac{119}{1} \longleftarrow \text { Repeating }
$$

Thus, $\quad \frac{1}{17}=0 . \overline{0588235294117647}$
Hence, the required number of digits in the repeating block is 16 .

Chap 1: Number Systems

6. Look at several examples of rational numbers in the form $\frac{p}{q}(q \neq 0)$, where p and q are integers with no common factors other than 1 and having terminating decimal representations (expansions). Can you guess what property q must satisfy?

Sol :

To represent rational number $\frac{p}{q}(q \neq 0)$ in terminating decimal form it is necessary to choose denominator q such that its prime factorization must has only powers of 2 or powers of 5 .
For example
(i) $\frac{7}{16}$ is a terminating decimal because $16=2^{4}$
(ii) $\frac{11}{25}$ is a terminating decimal because $25=5^{2}$
7. Write three numbers whose decimal expansions are non-terminating non-recurring.

Sol :

As we know that irrational numbers in the decimal expansion are always non-terminating and nonrecurring.
Therefore,

$$
\begin{aligned}
\sqrt{3} & =1.73205080756 \ldots \ldots \ldots . \\
\frac{1}{\sqrt{5}} & =0.44721359549 \ldots \ldots \ldots . \\
\sqrt{10} & =3.16227766016 \ldots \ldots \ldots
\end{aligned}
$$

Student may have their own answers.
For example
0.01001000100001 \qquad
0.202002000200002 \qquad
0.003000300003 \qquad

PRACTICE:

1. Write three numbers whose decimal expansions are non-terminating non-recurring.
Ans: $\sqrt{2}, \sqrt{3}, \sqrt{5}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{7}}$
2. Find three different irrational numbers between the rational numbers $\frac{5}{7}$ and $\frac{9}{11}$.

Sol :

$\frac{5}{7}$ in decimal representation is as follows :

	0.714285.........
7	$\begin{array}{r} 5.0 \\ 49 \end{array} \quad \longrightarrow A$
	10
	7
	30
	28
	20
	14
	60
	56
	40
	35
	$5 \longrightarrow B$

Remainder at stage B is same as that of remainder of stage A.
Hence $\quad \frac{5}{7}=0 . \overline{714285}$
Now $\frac{9}{11}$ in decimal representation is as follows:

	0.81
11	$9.0 \longrightarrow C$
	88
	20
	11
	$9 \longrightarrow D$

Remainder at stage D is same as that of remainder at stage C.
Hence $\quad \frac{9}{11}=0 . \overline{81}$
Now we can have infinite many irrational numbers between $\frac{5}{7}$ and $\frac{9}{11}$.
Any three of these are :

$$
\begin{aligned}
& 0.75075007500075000075 \ldots \ldots, \\
& 0.767076700767000 \ldots \ldots
\end{aligned}
$$

and 0.80800800080000 \qquad
9. Classify the following numbers as rational or irrational:
(i) $\sqrt{23}$
(ii) $\sqrt{225}$
(iii) 0.3796
(iv) 7.478478
(v) 1.101001000100001 \qquad

Sol :
(i) $\sqrt{23}$ is irrational number because 23 is prime number and prime number is not a perfect square root.
(ii) $\sqrt{225}$ is rational number because $\sqrt{225}=15$, rational number.
(iii) 0.3796 , terminating decimal, so rational number.
(iv) $7.478478 \quad \ldots \ldots \ldots .=7 . \overline{478}, \quad$ non-terminating repeating (recurring), so rational number.
(v) 1.101001000100001 \qquad non-terminating nonrepeating, so irrational number.

PRACTICE :

1. Classify the following numbers as rational or irrational:
(i) $\sqrt{17}$
(ii) $\sqrt{625}$
(iii) $\sqrt{29}$
(v) $\sqrt{529}$
(vi) 0.514
(vii) 0.8349
(vii) 2.4563563563.......
(viii) 4.34343434.....
(ix) 2.202002000200002 \qquad

Ans : (i) Irrational (ii) Rational
(iii) Irrational (iv) Rational
(v) Rational (vi) Rational
(vii) Rational (viii) Rational
(xi) Irrational

EXERCISE 1.4

1. Visualise 3.765 on the number line, using successive magnification.

Sol :

1. We notice the number 3.7 lies between 3 and 4 . So, first we locate numbers 3 and 4 on number line and divide the portion into ten equal parts and locate 3.7 and 3.8 [Refer step 2]
2. Further 3.76 lies between 3.7 and 3.8 . So, we magnify 3.7 and 3.8 and divide the portion into ten equal parts and locate 3.76 and 3.77. [Refer step 3]
3. Further 3.765 lies between 3.76 and 3.77 . So, we magnify 3.76 and 3.77 and divide the portion into ten equal parts and locate 3.765. [Refer step 4]

Point O in step 4 represents the number 3.765 on the number line.

PRACTICE :

1. Visualise 2.458 on the number line, using successive magnification.
Ans: Do it yourself
2. Visualise $4 . \overline{26}$ on the number line, up to 4 decimal places.

Sol :

We have $\quad 4 . \overline{26}=4.2626262626$

1. Visualise 4 and 5 as $4 . \overline{26}$ lies between 4 and 5 and divide portion in ten equal parts and locate 4.2. [Refer step 2]
2. Visualise 4.2 and 4.3 as 4.26 lies between 4.2 and 4.3 and divide portion in ten equal parts and locate 4.26. [Refer step 3]
3. Visualise 4.26 and 4.27 as 4.262 lies between 4.26 and 4.27 and divide portion in ten equal parts and locate 4.262. [Refer step 4]
4. Visualise 4.262 and 4.263 as 4.2626 lies between 4.262 and 4.263 and divide portion in ten equal parts and locate 4.2626. [Refer step 5]

Point O in step 5 represents the number $4 . \overline{26}$ on the number line.

PRACTICE :

1. Visualise $3 . \overline{52}$ on the number line, up to 4 decimal places.
Ans : Do it yourself

EXERCISE 1.5

1. Classify the following numbers as rational or irrational:
(i) $2-\sqrt{5}$
(ii) $(3+\sqrt{23})-\sqrt{23}$
(iii) $\frac{2 \sqrt{7}}{7 \sqrt{7}}$
(iv) $\frac{1}{\sqrt{2}}$
(v) 2π

Sol :

(i) $2-\sqrt{5}$ is an irrational number, as difference of a rational and an irrational number is irrational.
(ii) $(3+\sqrt{23})-\sqrt{23}=3+\sqrt{23}-\sqrt{23}=3$,

8 is a rational number.
(iii) $\frac{2 \sqrt{7}}{7 \sqrt{7}}=\frac{2}{7}$, is a rational number.
(iv) $\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$ is an irrational number, as divisors of an irrational number by a non-zero rational number is irrational.
(v) 2π, irrational number, as π is an irrational number and multiplication of a rational and an irrational number is irrational.

PRACTICE :

1. Classify the following numbers as rational or irrational:
(i) $(5+\sqrt{14})-\sqrt{14}$
(ii) $5+\sqrt{3}$
(iii) $(5+\sqrt{17})+\sqrt{17}$
(iv) $2-\sqrt{5}$
(v) $\frac{3 \sqrt{5}}{8 \sqrt{5}}$
(vi) $\frac{7 \sqrt{3}}{8 \sqrt{5}}$
(vii) $\frac{1}{\sqrt{6}}$
(viii) $\frac{\sqrt{5}}{2}$
(ix) 5π
(x) $2+3 \pi$

Ans: (i) Rational (ii) Irrational (iii) Irrational (iv) Irrational (v) Rational (vi) Irrational (vii) Irrational (viii) Irrational (ix) Irrational (x) Irrational
2. Simplify each of the following expressions :
(i) $(3+\sqrt{3})(2+\sqrt{2})$
(ii) $(3+\sqrt{3})(3-\sqrt{3})$
(iii) $(\sqrt{5}+\sqrt{2})^{2}$
(iv) $(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})$

Sol :

$$
\begin{align*}
\text { (i) }(3+\sqrt{3})(2+\sqrt{2}) & =3 \times 2+3 \sqrt{2}+2 \sqrt{3}+\sqrt{6} \\
& =6+3 \sqrt{2}+2 \sqrt{3}+\sqrt{6} \\
\text { (ii) }(3+\sqrt{3})(3-\sqrt{3}) & =(3)^{2}-(\sqrt{3})^{2} \\
& =9-3=6 \\
\text { (iii) } \quad(\sqrt{5}+\sqrt{2})^{2} & =(\sqrt{5})^{2}+2 \cdot \sqrt{5} \cdot \sqrt{2}+(\sqrt{2})^{2} \tag{iii}\\
& =5+2 \sqrt{10}+2 \\
& =7+2 \sqrt{10}
\end{align*}
$$

(iv) $(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})=(\sqrt{5})^{2}-(\sqrt{2})^{2}$

PRACTICE :

1. Simplify each of the following expressions :
(i) $(7+\sqrt{3})(4+\sqrt{5})$
(ii) $(2+\sqrt{2})(2-\sqrt{2})$
(iii) $(\sqrt{3}-\sqrt{11})^{2}$
(iv) $(\sqrt{13}-\sqrt{7})(\sqrt{13}+\sqrt{7})$
(v) $(\sqrt{18}+\sqrt{9})(\sqrt{18}-\sqrt{9})$
(vi) $(7+\sqrt{2})(7-\sqrt{2})$
(vii) $(4+\sqrt{6})(3+\sqrt{6})$

Ans: (i) $28+4 \sqrt{3}+7 \sqrt{5}+\sqrt{15}$ (ii) 2
(iii) $14+2 \sqrt{33}$ (iv) 6 (v) 9 (vi) 47
(vii) $18+7 \sqrt{6}$
3. Recall, π is defined as the ratio of the circumference (say c) of a circle to its diameter (say d). That is, $\pi=\frac{c}{d}$. This seems to contradict the fact that π is irrational. How will you resolve this contradiction?

Sol :

On measuring c with any device, we get only approximate measurement. Therefore, π is an irrational.
4. Represent $\sqrt{9.3}$ on the number line.

Sol :

Mark the distance 9.3 units from a fixed point A on a given line to obtain a point B such that $A B=9.3$ units. From B mark a distane of 1 unit and call the new point as C. Find the mid-point of $A C$ and call that point as O. Draw a semi-circle with centre O and radius $O C=5.15$ units. Draw a line perpendicular to $A C$ passing through B cutting the semi-circle at D. Then $B D=\sqrt{9.3}$.

Mathematically Justification

$$
\begin{aligned}
O A & =O C=O D=5.15 \\
& \quad[\text { radius of semi-circle }] \\
O B & =A B-O A \\
& =9.3-5.15 \\
O B & =4.15
\end{aligned}
$$

In rt. $\angle d \triangle O B D$;

$$
O B^{2}+B D^{2}=O D^{2}
$$

[Using Pythagoras theorem]

$$
(4.15)^{2}+B D^{2}=(5.15)^{2}
$$

$$
\begin{aligned}
B D^{2}= & (5.15)^{2}-(4.15)^{2} \\
= & (5.15+4.15)(5.15-4.15) \\
& {\left[\operatorname{Using} a^{2}-b^{2}=(a+b)(a-b)\right] } \\
= & (9.3)(1) \\
B D^{2}= & 9.3 \\
B D= & \sqrt{9.3}
\end{aligned}
$$

If we want to know the position of $\sqrt{9.3}$ on the number line then we treat line $B C$ as number line with B as zero, C as 1 and so on. Draw an arc with B as centre and radius $B D$ which intersects the number line in E . Then E represents $\sqrt{9.3}$.

PRACTICE :

1. Represent $\sqrt{6.3}$ on the number line.

Ans: Do Yourself
2. Represent $\sqrt{7.5}$ on the number line.

Ans : Do Yourself
. Rationalise the denominators of the following :
(i) $\frac{1}{\sqrt{7}}$
(ii) $\frac{1}{\sqrt{7}-\sqrt{6}}$
(iii) $\frac{1}{\sqrt{5}+\sqrt{2}}$
(iv) $\frac{1}{\sqrt{7}-2}$

Sol :

(i) $\frac{1}{\sqrt{7}}$

Multiplying the numerator and denominator by $\sqrt{7}$ we have

$$
\frac{1}{\sqrt{7}}=\frac{1}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}}=\frac{\sqrt{7}}{7}
$$

(ii) $\frac{1}{\sqrt{7}-\sqrt{6}}$

Multiplying the numerator and denominator by $(\sqrt{7}+\sqrt{6})$ we have

$$
\begin{aligned}
\frac{1}{\sqrt{7}-\sqrt{6}} & =\frac{\sqrt{7}+\sqrt{6}}{(\sqrt{7}-\sqrt{6})(\sqrt{7}+\sqrt{6})} \\
& =\frac{\sqrt{7}+\sqrt{6}}{7-6}=\sqrt{7}+\sqrt{6}
\end{aligned}
$$

(iii) $\frac{1}{\sqrt{5}+\sqrt{2}}$

Multiplying the numerator and denominator by $(\sqrt{5}-\sqrt{2})$ we have

$$
\begin{aligned}
\frac{1}{\sqrt{5}+\sqrt{2}} & =\frac{\sqrt{5}-\sqrt{2}}{(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})} \\
& =\frac{\sqrt{5}-\sqrt{2}}{5-2}=\frac{\sqrt{5}-\sqrt{2}}{3}
\end{aligned}
$$

(iv) $\frac{1}{\sqrt{7}-2}$

Multiplying the numerator and denominator by $(\sqrt{7}+2)$ we have

$$
\frac{1}{\sqrt{7}-2}=\frac{\sqrt{7}+2}{(\sqrt{7}-2)(\sqrt{7}+2)}
$$

$$
=\frac{\sqrt{7}+2}{7-4}=\frac{\sqrt{7}+2}{3}
$$

PRACTICE :

1. Rationalise the denominators of the following :
(i) $\frac{1}{\sqrt{5}}$
(ii) $\frac{2}{\sqrt{8}}$
(iii) $\frac{1}{\sqrt{6}-\sqrt{5}}$
(iv) $\frac{1}{\sqrt{6}+\sqrt{5}}$
(v) $\frac{1}{2-\sqrt{3}}$
(iv) $\frac{1}{\sqrt{7}+2}$

Ans: (i) $\frac{\sqrt{5}}{5}$ (ii) $\frac{\sqrt{8}}{4}$ (iii) $\sqrt{6}+\sqrt{5}$

$$
\text { (iv) } \sqrt{6}-\sqrt{5} \text { (v) } 2+\sqrt{3} \text { (vi) } \frac{\sqrt{7}-2}{11}
$$

EXERCISE 1.6

1. Find:
(i) $64^{1 / 2}$
(ii) $32^{1 / 5} 3$
(iii) $125^{1 / 3}$

Sol :

(i) $\quad 64^{1 / 2}=\left(8^{2}\right)^{1 / 2}=(8)^{2 \times 1 / 2}=8$
(ii) $\quad 32^{1 / 5}=\left(2^{5}\right)^{1 / 5}=(2)^{5 \times 1 / 5}=2$
(iii) $125^{1 / 3}=\left(5^{3}\right)^{1 / 3}=(5)^{3 \times 1 / 3}=5$

PRACTICE:

1. Find :
(i) $81^{1 / 2}$
(ii) $243^{1 / 5}$
(iii) $343^{1 / 3}$
(iv) $625^{1 / 4}$
(v) $256^{1 / 8}$
(vi) $729^{1 / 6}$

Ans: (i) 9 (ii) 3 (iii) 7 (iv) 5 (v) 2 (vi) 3
2. Find:
(i) $9^{3 / 2}$
(ii) $32^{2 / 5}$
(iii) $16^{3 / 4}$
(iv) $125^{-1 / 3}$

Sol :

(i)

$$
\begin{aligned}
9^{3 / 2} & =\left(3^{2}\right)^{3 / 2} \\
& =(3)^{2 \times 3 / 2}=(3)^{3}=27
\end{aligned}
$$

(ii) $32^{2 / 5}=\left(2^{5}\right)^{2 / 5}$

$$
=2^{5 \times 2 / 5}=(2)^{2}=4
$$

(iii) $\quad 16^{3 / 4}=\left(2^{4}\right)^{3 / 4}$

$$
=(2)^{4 \times 3 / 4}=(2)^{3}=8
$$

(iv) $125^{-1 / 3}=\left(5^{3}\right)^{-1 / 3}$

$$
=(5)^{3 \times(-1 / 3)}=(5)^{-1}=\frac{1}{5}
$$

PRACTICE :

1. Find:
(i) $27^{2 / 3}$
(ii) $49^{3 / 2}$
(iii) $64^{5 / 6}$
(iv) $16^{5 / 2}$
(v) $625^{3 / 4}$
(vi) $81^{3 / 4}$
(vii) $64^{-1 / 3}$
(viii) $64^{-2 / 3}$

Ans : (i) 9 (ii) 343 (iii) 32 (iv) 1024 (v) 125
(vi) 27 (vii) $\frac{1}{4}$ (viii) $\frac{1}{16}$
3. Simplify :
(i) $2^{2 / 3} \cdot 2^{1 / 5}$
(ii) $\left(\frac{1}{3^{3}}\right)^{7}$
(iii) $\frac{11^{1 / 2}}{11^{1 / 4}}$
(iv) $7^{1 / 2} \cdot 8^{1 / 2}$

Sol :

(i) $2^{2 / 3} \cdot 2^{1 / 5}=2^{2 / 3+1 / 5}=2^{13 / 15}$
(ii) $\left(\frac{1}{3^{3}}\right)^{7}=\frac{1}{\left(3^{3}\right)^{7}}=\frac{1}{3^{3 \times 7}}=\frac{1}{3^{21}}=3^{-21}$
(iii) $\quad \frac{11^{1 / 2}}{11^{1 / 4}}=11^{1 / 2-1 / 4}=11^{1 / 4}$
(iv) $7^{1 / 2} \cdot 8^{1 / 2}=(7.8)^{1 / 2}=56^{1 / 2}$

PRACTICE:

1. Simplify :
(i) $3^{2 / 3} \cdot 3^{1 / 3}$
(ii) $2^{1 / 3} \cdot 2^{2 / 5}$
(iii) $\left(6^{1 / 3}\right)^{6}$
(iv) $5^{1 / 2} \cdot 4^{1 / 2}$
(v) $\left(9^{1 / 3}\right)^{1 / 2}$
(vi) $3^{3 / 2} \cdot 4^{3 / 2}$
(vii) $\frac{13^{3 / 4}}{13^{2 / 3}}$
(viii) $\frac{15^{1 / 2}}{15^{1 / 3}}$

Ans: (i) 3 (ii) $2^{7 / 15}$ (iii) 36 (iv) $20^{1 / 2}$ (v) $3^{1 / 3}$ (vi) $12^{3 / 2}$ (vii) $13^{1 / 12}$ (viii) $15^{1 / 6}$

